
COP 4710: Database Systems (Chapter 5) Page 1 Mark Llewellyn

COP 4710: Database Systems
Fall 2007

Chapter 5 – Introduction To SQL – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/ccop4710/fall2007

COP 4710: Database Systems (Chapter 5) Page 2 Mark Llewellyn

Processing Multiple Tables – Joins
• Join – a relational operation that causes two or more tables with a

common domain to be combined into a single table or view

• Equi-join – a join in which the joining condition is based on equality
between values in the common columns; common columns appear
redundantly in the result table

• Natural join – an equi-join in which one of the duplicate columns is
eliminated in the result table

• Outer join – a join in which rows that do not have matching values in
common columns are nonetheless included in the result table (as opposed
to inner join, in which rows must have matching values in order to appear
in the result table)

• Union join – includes all columns from each table in the join, and an
instance for each row of each table

The common columns in joined tables are usually the primary key of the
dominant table and the foreign key of the dependent table in 1:M relationships

COP 4710: Database Systems (Chapter 5) Page 3 Mark Llewellyn

The following slides create tables for
this enterprise data model

COP 4710: Database Systems (Chapter 5) Page 4 Mark Llewellyn

These tables are used in queries that follow

COP 4710: Database Systems (Chapter 5) Page 5 Mark Llewellyn

• For each customer who placed an order, what is the
customer’s name and order number?

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID
FROM CUSTOMER_T, ORDER_T

WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID;

Join involves multiple tables in FROM clause

Natural Join Example

WHERE clause performs the
equality check for common
columns of the two tables

COP 4710: Database Systems (Chapter 5) Page 6 Mark Llewellyn

Results

COP 4710: Database Systems (Chapter 5) Page 7 Mark Llewellyn

• List the customer name, ID number, and order number
for all customers. Include customer information even
for customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
ORDER_ID

FROM CUSTOMER_T, LEFT OUTER JOIN ORDER_T
ON CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID;

Outer Join Example (Microsoft Syntax)

LEFT OUTER JOIN syntax with
ON keyword instead of WHERE

causes customer data to appear
even if there is no corresponding
order data

COP 4710: Database Systems (Chapter 5) Page 8 Mark Llewellyn

• List the customer name, ID number, and order number for
all customers. Include customer information even for
customers that do have an order

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID
FROM CUSTOMER_T, ORDER_T
WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID(+);

Outer Join Example (Oracle Syntax)

Outer join in Oracle uses regular join
syntax, but adds (+) symbol to the
side that will have the missing data

COP 4710: Database Systems (Chapter 5) Page 9 Mark Llewellyn

• Assemble all information necessary to create an invoice
for order number 1006

SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
CUSTOMER_ADDRESS, CITY, SATE, POSTAL_CODE,
ORDER_T.ORDER_ID, ORDER_DATE, QUANTITY,
PRODUCT_NAME, UNIT_PRICE, (QUANTITY * UNIT_PRICE)

FROM CUSTOMER_T, ORDER_T, ORDER_LINE_T, PRODUCT_T
WHERE CUSTOMER_T.CUSTOMER_ID =

ORDER_LINE.CUSTOMER_ID AND ORDER_T.ORDER_ID =
ORDER_LINE_T.ORDER_ID

AND ORDER_LINE_T.PRODUCT_ID =
PRODUCT_PRODUCT_ID

AND ORDER_T.ORDER_ID = 1006;

Four tables involved in this join

Multiple Table Join Example

Each pair of tables requires an equality-check condition in the WHERE clause,
matching primary keys against foreign keys

COP 4710: Database Systems (Chapter 5) Page 10 Mark Llewellyn

Results from a four-table join

From CUSTOMER_T table

From ORDER_T table From PRODUCT_T table

COP 4710: Database Systems (Chapter 5) Page 11 Mark Llewellyn

Processing Multiple Tables Using Subqueries

• Subquery – placing an inner query (SELECT
statement) inside an outer query.

• Options:
– In a condition of the WHERE clause.
– As a “table” of the FROM clause.
– Within the HAVING clause.

• Subqueries can be:
– Noncorrelated – executed once for the entire outer query.
– Correlated – executed once for each row returned by the

outer query.

COP 4710: Database Systems (Chapter 5) Page 12 Mark Llewellyn

• Show all customers who have placed an order.

SELECT CUSTOMER_NAME FROM CUSTOMER_T
WHERE CUSTOMER_ID IN

(SELECT DISTINCT CUSTOMER_ID FROM ORDER_T);

Subquery Example

Subquery is embedded in
parentheses. In this case it
returns a list that will be used
in the WHERE clause of the
outer query

The IN operator will test to see if the
CUSTOMER_ID value of a row is
included in the list returned from the
subquery

COP 4710: Database Systems (Chapter 5) Page 13 Mark Llewellyn

Correlated vs. Noncorrelated Subqueries

• Noncorrelated subqueries:
– Do not depend on data from the outer query.

– Execute once for the entire outer query.

• Correlated subqueries:
– Make use of data from the outer query.

– Execute once for each row of the outer query.

– Can use the EXISTS operator.

COP 4710: Database Systems (Chapter 5) Page 14 Mark Llewellyn

Processing a
noncorrelated
subquery

No reference to data
in outer query, so
subquery executes
once only

These are the only
customers that have
IDs in the ORDER_T
table

1. The subquery
executes and
returns the
customer IDs from
the ORDER_T table

2. The outer query on
the results of the
subquery

COP 4710: Database Systems (Chapter 5) Page 15 Mark Llewellyn

• Show all orders that include furniture finished in natural
ash

SELECT DISTINCT ORDER_ID FROM ORDER_LINE_T
WHERE EXISTS

(SELECT * FROM PRODUCT_T
WHERE PRODUCT_ID = ORDER_LINE_T.PRODUCT_ID
AND PRODUCT_FINISH = ‘Natural ash’);

Correlated Subquery Example

The subquery is testing for a value
that comes from the outer query

The EXISTS operator will return a
TRUE value if the subquery resulted
in a non-empty set, otherwise it
returns a FALSE

COP 4710: Database Systems (Chapter 5) Page 16 Mark Llewellyn

Processing a
correlated
subquery Subquery refers to outer-

query data, so executes once
for each row of outer query

Note: only the
orders that
involve
products with
Natural Ash will
be included in
the final results

COP 4710: Database Systems (Chapter 5) Page 17 Mark Llewellyn

• Show all products whose price is higher than the average

SELECT PRODUCT_DESCRIPTION, STANDARD_PRICE, AVGPRICE
FROM

(SELECT AVG(STANDARD_PRICE) AVGPRICE FROM PRODUCT_T),
PRODUCT_T
WHERE STANDARD_PRICE > AVG_PRICE;

Another Subquery Example

The WHERE clause normally cannot include aggregate functions, but because the aggregate is
performed in the subquery its result can be used in the outer query’s WHERE clause

One column of the subquery is an
aggregate function that has an alias
name. That alias can then be referred
to in the outer query

Subquery forms the derived table used
in the FROM clause of the outer query

COP 4710: Database Systems (Chapter 5) Page 18 Mark Llewellyn

SQL Join Operations

• The SQL join operations merge rows from two tables and
returns the rows that:

1. Have common values in common columns (natural join) or,

2. Meet a given join condition (equality or inequality) or,

3. Have common values in common columns or have no matching
values (outer join).

• We’ve already examined the basic form of an SQL join
which occurs when two tables are listed in the FROM clause
and the WHERE clause specifies the join condition.

• An example of this basic form of the join is shown on the
next page.

COP 4710: Database Systems (Chapter 5) Page 19 Mark Llewellyn

SQL Join Operations (cont.)

• The FROM clause indicates which tables are to be joined. If
three or more tables are specified, the join operation takes
place two tables at a time, starting from left to right.

• The join condition is specified in the WHERE clause. In the
example, a natural join is effected on the attribute V_CODE.

• The SQL join syntax shown above is sometimes referred to
as an “old-style” join.

• The tables on pages 55 and 56, summarize the SQL join
operations.

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME

FROM PRODUCT, VENDOR

WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

COP 4710: Database Systems (Chapter 5) Page 20 Mark Llewellyn

SQL Cross Join Operation

• A cross join in SQL is equivalent to a Cartesian
product in standard relational algebra. The cross
join syntax is:

SELECT column-list

FROM table1, table2;

SELECT column-list

FROM table1 CROSS JOIN table2;

old style syntax

new style syntax

COP 4710: Database Systems (Chapter 5) Page 21 Mark Llewellyn

SQL Natural Join Operation

• The natural join syntax is:

• The natural join will perform the following tasks:

– Determine the common attribute(s) by looking for
attributes with identical names and compatible data types.

– Select only the rows with common values in the common
attribute(s).

– If there are no common attributes, return the cross join of
the two tables.

SELECT column-list

FROM table1 NATURAL JOIN table2;
new style syntax

COP 4710: Database Systems (Chapter 5) Page 22 Mark Llewellyn

SQL Natural Join Operation (cont.)

• The syntax for the old-style natural join is:

• One important difference between the natural join
and the “old-style” syntax is that the natural join
does not require the use of a table qualifier for the
common attributes. The two SELECT statements
shown on the next page are equivalent.

SELECT column-list

FROM table1, table2

WHERE table1.C1 = table2.C2;

old style syntax

COP 4710: Database Systems (Chapter 5) Page 23 Mark Llewellyn

SQL Natural Join Operation (cont.)

SELECT CUS_NUM, CUS_LNAME,

INV_NUMBER, INV_DATE

FROM CUSTOMER, INVOICE

WHERE CUSTOMER.CUS_NUM = INVOICE. CUS_NUM;

old style
syntax

SELECT CUS_NUM, CUS_LNAME,

INV_NUMBER, INV_DATE

FROM CUSTOMER NATURAL JOIN INVOICE;

old style
syntax

COP 4710: Database Systems (Chapter 5) Page 24 Mark Llewellyn

Join With Using Clause

• A second way to express a join is through the
USING keyword. This query will return only the
rows with matching values in the column indicated
in the USING clause. The column listed in the
USING clause must appear in both tables.

• The syntax is:

SELECT column-list

FROM table1 JOIN table2 USING (common-column);

COP 4710: Database Systems (Chapter 5) Page 25 Mark Llewellyn

Join With Using Clause (cont.)

• An example:

• As was the case with the natural join command, the
JOIN USING does not required the use of qualified
names (qualified table names). In fact, Oracle 9i
will return an error if you specify the table name in
the USING clause.

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS,

LINE_PRICE

FROM INVOICE JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE);

COP 4710: Database Systems (Chapter 5) Page 26 Mark Llewellyn

Join On Clause

• Both the NATURAL JOIN and the JOIN USING commands
use common attribute names in joining tables.

• Another way to express a join when the tables have no
common attribute names is to use the JOIN ON operand.
This query will return only the rows that meet the indicated
condition. The join condition will typically include an
equality comparison expression of two columns. The
columns may or may not share the same name, but must
obviously have comparable data types.

• The syntax is:
SELECT column-list

FROM table1 JOIN table2 ON join-condition;

COP 4710: Database Systems (Chapter 5) Page 27 Mark Llewellyn

Join On Clause (cont.)

• An example:

• Notice in the example query, that unlike the NATURAL
JOIN and the JOIN USING operation, the JOIN ON clause
requires the use of table qualifiers for the common attributes.
If you do not specify the table qualifier you will get a
“column ambiguously defined” error message.

• Keep in mind that the JOIN ON syntax allows you to
perform a join even when the tables do not share a common
attribute name.

SELECT INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE

FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER

JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

COP 4710: Database Systems (Chapter 5) Page 28 Mark Llewellyn

Join On Clause (cont.)

• For example, to general a list of all employees with
the manager’s name you can use the recursive query
shown below which utilizes the JOIN ON clause.

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME

FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM

ORDER BY E.EMP_MGR;

COP 4710: Database Systems (Chapter 5) Page 29 Mark Llewellyn

Outer Joins
• We saw the forms for the LEFT OUTER JOIN and the

RIGHT OUTER JOIN in the previous set of notes.

• There is also a FULL OUTER JOIN operation in SQL. A
full outer join returns not only the rows matching the join
condition (that is, rows with matching values in the common
column(s)), but also all the rows with unmatched values in
either side table.

• The syntax of a full outer join is:

SELECT column-list

FROM table1 FULL [OUTER] JOIN table2 ON join-condition;

COP 4710: Database Systems (Chapter 5) Page 30 Mark Llewellyn

Outer Joins (cont.)

• The following example will list the product code,
vendor code, and vendor name for all products and
include all the product rows (products without
matching vendors) and also all vendor rows
(vendors without matching products):

SELECT P_CODE, VENDOR.V_CODE, V_NAME

FROM VENDOR FULL OUTER JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

COP 4710: Database Systems (Chapter 5) Page 31 Mark Llewellyn

Summary of SQL JOIN Operations

Returns only the rows that meet the join condition
indicated in the ON clause.

SELECT *
FROM T1 JOIN T2

ON T1.C1 = T2.C1

JOIN ON

Returns only the rows with matching values in the
columns indicated in the USING clause.

SELECT *
FROM T1 JOIN T2 USING
(C1)

JOIN USING

Returns only the rows with matching values in the
matching columns. The matching columns must
have the same names and similar data types.

SELECT *
FROM T1 NATURAL JOIN
T2

NATURAL
JOIN

Returns only the rows that meet the join condition in
the WHERE clause – old style. Only rows with
matching values are selected.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1

Old Style
JOIN

Inner

New style. Returns the Cartesian product of T1 and
T2.

SELECT *
FROM T1 CROSS JOIN T2;

Old style. Returns the Cartesian product of T1 and
T2

SELECT *
FROM T1, T2;

CROSS
JOIN

Cross

DescriptionSQL Syntax ExampleJoin TypeJoin
Classification

COP 4710: Database Systems (Chapter 5) Page 32 Mark Llewellyn

Summary of SQL JOIN Operations (cont.)

Returns rows with matching values and includes all
rows from both tables (T1 and T2) with unmatched
values.

SELECT *
FROM T1 FULL OUTER
JOIN T2
ON T1.C1= T2.C1

FULL JOIN

Returns rows with matching values and includes all
rows from the right table (T2) with unmatched
values.

SELECT *
FROM T1 RIGHT OUTER
JOIN T2
ON T1.C1= T2.C1

RIGHT JOIN

Returns rows with matching values and includes all
rows from the left table (T1) with unmatched values.

SELECT *
FROM T1 LEFT OUTER
JOIN T2
ON T1.C1= T2.C1

LEFT JOINOuter

DescriptionSQL Syntax ExampleJoin TypeJoin
Classification

COP 4710: Database Systems (Chapter 5) Page 33 Mark Llewellyn

Subqueries and Correlated Queries
• The use of joins allows a RDBMS go get information from

two or more tables. The data from the tables is processed
simultaneously.

• It is often necessary to process data based on other processed
data. Suppose, for example, that you want to generate a list
of vendors who provide products. (Recall that not all
vendors in the VENDOR table have provided products –
some of them are only potential vendors.)

• The following query will accomplish our task:
SELECT V_CODE, V_NAME

FROM VENDOR

WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

COP 4710: Database Systems (Chapter 5) Page 34 Mark Llewellyn

Subqueries and Correlated Queries (cont.)

• A subquery is a query (SELECT statement) inside a query.

• A subquery is normally expressed inside parentheses.

• The first query in the SQL statement is known as the outer
query.

• The second query in the SQL statement is known as the inner
query.

• The inner query is executed first.

• The output of the inner query is used as the input for the
outer query.

• The entire SQL statement is sometimes referred to as a
nested query.

COP 4710: Database Systems (Chapter 5) Page 35 Mark Llewellyn

Subqueries and Correlated Queries (cont.)

• A subquery can return:

1. One single value (one column and one row). This subquery can be
used anywhere a single value is expected. For example, in the right
side of a comparison expression.

2. A list of values (one column and multiple rows). This type of
subquery can be used anywhere a list of values is expected. For
example, when using the IN clause.

3. A virtual table (multi-column, multi-row set of values). This type of
subquery can be used anywhere a table is expected. For example, in
the FROM clause.

4. No value at all, i.e., NULL. In such cases, the output of the outer
query may result in an error or null empty set, depending on where
the subquery is used (in a comparison, an expression, or a table set).

COP 4710: Database Systems (Chapter 5) Page 36 Mark Llewellyn

Correlated Queries
• A correlated query (really a subquery) is a subquery that contains a

reference to a table that also appears in the outer query.

• A correlated query has the following basic form:

• Notice that the subquery contains a reference to a column of table1,
even though the subquery’s FROM clause doesn’t mention table1.
Thus, query execution requires a look outside the subquery, and finds the
table reference in the outer query.

SELECT * FROM table1 WHERE col1 = ANY
(SELECT col1 FROM table2

WHERE table2.col2 = table1.col1);

COP 4710: Database Systems (Chapter 5) Page 37 Mark Llewellyn

WHERE Subqueries
• The most common type of subquery uses an inner SELECT

subquery on the right hand side of a WHERE comparison
expression.

• For example, to find all products with a price greater than or
equal to the average product price, the following query
would be needed:

SELECT P_CODE, P_PRICE

FROM PRODUCT

WHERE P_PRICE >= (SELECT AVG(P_PRICE)

FROM PRODUCT);

COP 4710: Database Systems (Chapter 5) Page 38 Mark Llewellyn

WHERE Subqueries (cont.)

• Subqueries can also be used in combination with joins.

• The query below lists all the customers that ordered the
product “Claw hammer”.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_CODE = (SELECT P_CODE

FROM PRODUCT

WHERE P_DESCRIPT = “Claw hammer”);

COP 4710: Database Systems (Chapter 5) Page 39 Mark Llewellyn

WHERE Subqueries (cont.)

• Notice that the previous query could have been written as:

• However, what would happen if two or more product
descriptions contain the string “Claw hammer”?

– You would get an error message because only a single
value is expected on the right hand side of this expression.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_DESCRIPT = ‘Claw hammer’);

COP 4710: Database Systems (Chapter 5) Page 40 Mark Llewellyn

IN Subqueries
• To handle the problem we just saw, the IN operand must be

used.

• The query below lists all the customers that ordered any kind
of hammer or saw.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_CODE IN (SELECT P_CODE

FROM PRODUCT

WHERE P_DESCRIPT LIKE ‘%hammer%’

OR P_DESCRIPT LIKE ‘%saw%’);

COP 4710: Database Systems (Chapter 5) Page 41 Mark Llewellyn

HAVING Subqueries
• It is also possible to use subqueries with a HAVING clause.

• Recall that the HAVING clause is used to restrict the output
of a GROUP BY query by applying a conditional criteria to
the grouped rows.

• For example, the following query will list all products with
the total quantity sold greater than the average quantity sold.

SELECT DISTINCT P_CODE, SUM(LINE_UNITS)

FROM LINE

GROUP BY P_CODE

HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS)

FROM LINE);

COP 4710: Database Systems (Chapter 5) Page 42 Mark Llewellyn

Multi-row Subquery Operators: ANY and ALL
• The IN subquery uses an equality operator; that is, it only

selects those rows that match at least one of the values in the
list. What happens if you need to do an inequality
comparison of one value to a list of values?

• For example, suppose you want to know what products have
a product cost that is greater than all individual product costs
for products provided by vendors from Florida.

SELECT P_CODE, P_ONHAND*P_PRICE

FROM PRODUCT

WHERE P_ONHAND*P_PRICE > ALL (SELECT P_ONHAND*P_PRICE

FROM PRODUCT

WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR

WHERE V_STATE= ‘FL’));

COP 4710: Database Systems (Chapter 5) Page 43 Mark Llewellyn

FROM Subqueries
• In all of the cases of subqueries we’ve seen so far, the subquery was part

of a conditional expression and it always appeared on the right hand side
of an expression. This is the case for WHERE, HAVING, and IN
subqueries as well as for the ANY and ALL operators.

• Recall that the FROM clause specifies the table(s) from which the data
will be drawn. Because the output of a SELECT statement is another
table (or more precisely, a “virtual table”), you could use a SELECT
subquery in the FROM clause.

• For example, suppose that you want to know all customers who have
purchased products 13-Q2/P2 and 23109-HB. Since all product
purchases are stored in the LINE table, it is easy to find out who
purchased any given product just by searching the P_CODE attribute in
the LINE table. However, in this case, you want to know all customers
who purchased both, not just one.

• The query on the next page accomplishes this task.

COP 4710: Database Systems (Chapter 5) Page 44 Mark Llewellyn

FROM Subqueries (cont.)

SELECT DISTINCT CUSTOMER.CUS_CODE , CUSTOMER.LNAME

FROM CUSTOMER, (SELECT INVOICE.CUS_CODE

FROM INVOICE NATURAL JOIN LINE

WHERE P_CODE = ’13-Q2/P2’) CP1,

(SELECT INVOICE.CUS_CODE

FROM INVOICE NATURAL JOIN LINE

WHERE P_CODE = ‘23109-HB’) CP2

WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE

AND CP1.CUS_CODE = CP2.CUS_CODE;

COP 4710: Database Systems (Chapter 5) Page 45 Mark Llewellyn

Subqueries in MySQL
• The ability to handle subqueries like we’ve just examined

was not available in MySQL until version 4.1.

• If you are using a version of MySQL earlier than 4.1 you will
need to download the latest version (5.0) before you begin to
work on the next assignment which will involve the
execution of subqueries.

• There are a number of other enhancements that became
active with version 4.1 that are extremely useful and we will
examine a number of these over the coming days.

COP 4710: Database Systems (Chapter 5) Page 46 Mark Llewellyn

Subqueries in MySQL (cont.)

• Subqueries are also useful in optimizing queries as they can
be used to eliminate more costly join operations.

• Consider the following general query:

• This query can be more efficiently expressed using
subqueries as:

SELECT DISTINCT table1.col1

FROM table1, table2

WHERE table1.col1 = table2.col1;

SELECT DISTINCT col1

FROM table1

WHERE table1.col1 IN (SELECT col1

FROM table2);

COP 4710: Database Systems (Chapter 5) Page 47 Mark Llewellyn

Conditional Expressions Using Case Syntax

This is available with
newer versions of SQL,
previously not part of
the standard

COP 4710: Database Systems (Chapter 5) Page 48 Mark Llewellyn

Ensuring Transaction Integrity

• Transaction = A discrete unit of work that must be
completely processed or not processed at all
– May involve multiple updates
– If any update fails, then all other updates must be cancelled

• SQL commands for transactions
• BEGIN TRANSACTION/END TRANSACTION

– Marks boundaries of a transaction
– COMMIT

• Makes all updates permanent
– ROLLBACK

• Cancels updates since the last COMMIT

COP 4710: Database Systems (Chapter 5) Page 49 Mark Llewellyn

An SQL Transaction sequence (in pseudocode)

COP 4710: Database Systems (Chapter 5) Page 50 Mark Llewellyn

Data Dictionary Facilities

• System tables that store metadata
• Users usually can view some of these tables
• Users are restricted from updating them
• Examples in Oracle 9i

– DBA_TABLES – descriptions of tables
– DBA_CONSTRAINTS – description of constraints
– DBA_USERS – information about the users of the system

• Examples in Microsoft SQL Server
– SYSCOLUMNS – table and column definitions
– SYSDEPENDS – object dependencies based on foreign keys
– SYSPERMISSIONS – access permissions granted to users

COP 4710: Database Systems (Chapter 5) Page 51 Mark Llewellyn

SQL:2003
Enhancements/Extensions

• User-defined data types (UDT)
– Subclasses of standard types or an object type

• Analytical functions (for OLAP)
• Persistent Stored Modules (SQL/PSM)

– Capability to create and drop code modules
– New statements:

• CASE, IF, LOOP, FOR, WHILE, etc.
• Makes SQL into a procedural language

• Oracle has propriety version called PL/SQL, and
Microsoft SQL Server has Transact/SQL

COP 4710: Database Systems (Chapter 5) Page 52 Mark Llewellyn

Routines and Triggers

• Routines
– Program modules that execute on demand
– Functions – routines that return values and take

input parameters
– Procedures – routines that do not return values

and can take input or output parameters
• Triggers

– Routines that execute in response to a database
event (INSERT, UPDATE, or DELETE)

COP 4710: Database Systems (Chapter 5) Page 53 Mark Llewellyn

Triggers contrasted with stored procedures

Procedures are called explicitly

Triggers are event-driven

COP 4710: Database Systems (Chapter 5) Page 54 Mark Llewellyn

Oracle PL/SQL trigger syntax

SQL:2003 Create routine syntax

COP 4710: Database Systems (Chapter 5) Page 55 Mark Llewellyn

Embedded and Dynamic SQL

• Embedded SQL
– Including hard-coded SQL statements in a program

written in another language such as C or Java
• Dynamic SQL

– Ability for an application program to generate
SQL code on the fly, as the application is running

